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ABSTRACT

A. Introduction and Problem Statement

Traditional methods for task allocation and planning in
multi-robot teams are typically offline, assuming that all
tasks are known in advance and assigned before mission
execution [1], [2], [3]. However, real-world environments
require resilient planning algorithms capable of handling un-
expected scenarios [4], [5], such as task failures, unstructured
environments, robot failures, and low battery levels.

To address these challenges, we propose a resilient task al-
location and planning framework tailored for heterogeneous
multi-robot systems, specifically incorporating drones and
ground robots such as Turtlebots. The framework combines
a high-level task allocation and planning module with a mid-
level behavior tree architecture to manage unexpected events
during execution.

The task allocation problem involves assigning different
types of tasks to a heterogeneous robot team, where each
robot has specific capabilities suited to certain tasks. The
environment includes both known and unknown elements,
such as static and dynamic obstacles (e.g., walls, bushes),
adding uncertainty to planning and execution. The goal is
to improve resilience to unexpected situations while keeping
mission time short.

A video has been prepared to present our algorithm, sup-
plementary technical details, and preliminary experimental
results: https://youtu.be/7pSYnkK5tDU.

B. Contribution

This work presents a resilient and modular task alloca-
tion and planning framework for heterogeneous multi-robot
systems, with the following contributions:

• Real-Time Task Reallocation Algorithm: Enables dy-
namic task reassignment once all tasks in a cluster
are completed, improving adaptability to environmental
changes and robot failures, ensuring a more efficient
and resilient multi-robot system.

• Obstacle-Aware Clustering: We introduce a clustering
method that incorporates obstacle-induced cost maps to
improve spatial grouping of tasks. This method enables
more realistic and environment-aware task allocation,
particularly effective in structured environments with
physical barriers such as walls.
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• Reactive Behavior Tree: The addition of a mid-level be-
havior tree aims to supplement the higher-level planner
by resolving short-horizon issues that the higher-level
planner does not take into account (e.g. task failures,
path conflicts, etc.).

C. Overall Framework Summary

The proposed framework follows a hierarchical and mod-
ular pipeline as shown in the right side of Figure 1:

• Task Encoding: Tasks are defined using Linear Tem-
poral Logic (LTL), then translated into Büchi automata
[6] and combined with environment models to create
product automata.

• Task Clustering and Allocation: Tasks are grouped using
an obstacle-aware, reward-based auction mechanism.
Clustering considers robot heterogeneity and environ-
mental obstacles through a spatial cost map.

• Dynamic Path Planning: Each robot uses a D* Lite-
based planner [7], [8] on an adaptive Halton map
to generate path plans, which can be updated during
execution as the environment changes.

• Coordination Management: A mid-level coordination
manager monitors execution and handles real-time
events such as failures or path blockages using reactive
strategies (e.g., behavior trees).

D. Framework Overview

Our task planner uses Linear Temporal Logic (LTL) to for-
mally define task rules. Tasks are assigned to a heterogeneous
robot team through an iterative, obstacle-aware clustered
auction. Unlike previous methods [11], [12], our approach
incorporates robot-specific rewards and uses a cost map to
consider environmental obstacles before clustering.

The cost map assigns penalties to walls regions to dis-
courage clustering across obstructive areas. Penalties are
determined by three factors: (1) proximity to the center of
a wall—closer regions imply longer detours; (2) proximity
to wall junctions—junctions may indicate narrow or blocked
passages; and (3) contact with map borders—which represent
impassable boundaries. These cost values improve cluster-
ing by explicitly accounting for obstacles, leading to more
context-aware task groupings.

During the auction phase, only certain robots are capable
of performing a specific type of task (i.e., environment
exploration). To balance workloads across different robot
types, we introduce a reward mechanism that encourages
eligible robots to prioritize these tasks over a common type
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Fig. 1. The left side illustrates the simulated environment built in Isaac Sim [9], [10], featuring walls, iron gates, and bushes. The space is divided into
four main regions, each containing several small rooms with items (indicated by red and blue markers) that need to be transported to the central green
zones (labeled b through e) in a central room. The environment includes a heterogeneous team of robots consisting of three aerial drones (UAVs) and
one ground robot (TurtleBot), with agents labeled 1 through 4. This setup is designed to evaluate task allocation, navigation, and coordination strategies
in cluttered and semi-structured environments. The right side illustrates the overall framework of the hierarchical task planner. The red blocks represent
task encoding components, including task specifications and environment information. The green blocks correspond to task allocation modules. The blue
block denotes the D* Lite path planning module, while the purple blocks represent the coordination manager, which includes the behavior tree. The entire
framework follows a hierarchical structure.

of task (in our case, pick-up and delivery) when applicable.
Task allocation is conducted using an iterative, consensus-
based auction algorithm [13] at the cluster level. Each robot
bids on a task cluster and, once assigned, completes all tasks
within that cluster. The auction continues with the remaining
clusters until all tasks are allocated.

For path planning, we use the D Lite algorithm [7], [8]
to compute optimal paths in partially known environments.
Instead of a grid map, we use an adaptive Halton sequence-
based map [14], [15], which varies point density based on
obstacle distribution—placing more points near obstacles
to capture complex geometry, and fewer in open areas to
reduce automaton construction time. Its triangular mesh also
produces smoother and shorter paths than the axis-aligned
grid structure.

Beneath the high-level planner, we implement a mid-level
coordination manager responsible for addressing real-time
issues and managing execution-level data. A system compiler
monitors the system and aggregates data during task execu-
tion, and behavior trees handle reactive strategies for critical
scenarios such as agent or task failure, path blockages, and
other unexpected events that may not be captured by the
high-level controller [16], [17]. By reporting and resolving
such issues, the coordination manager significantly enhances
the planning system’s resilience and adaptability in real-
world environments.

E. Experimental Results

In our experiments, we evaluate the performance of two
task allocation strategies: the Iterative Consensus-Based Auc-
tion Algorithm (ICBAA) [13] and the proposed Obstacles-
Aware Cluster algorithm. All experiments were conducted
in a structured 20×20 map environment (as shown in the
left side of Figure 1) with four robots assigned to perform
spatially distributed tasks.

TABLE I
PERFORMANCE METRICS FOR ITERATIVE CONSENSUS-BASED AUCTION

ALGORITHM (ICBAA).

Metrics 10 tasks 15 tasks 20 tasks

Total Cost (steps) 373 580 764
Total Time (seconds) 52.43 74.45 124.14

TABLE II
PERFORMANCE METRICS FOR OBSTACLES-AWARE CLUSTER

ALGORITHM.

Metrics 10 tasks 15 tasks 20 tasks 25 tasks

Total Cost (steps) 199 497 687 868
Total Time (seconds) 36.26 36.62 52.70 79.02

The ICBAA method adopts a dynamic task allocation
scheme where a consensus-based auction is triggered every
time a robot completes its assigned task. While ICBAA
demonstrates flexibility in dynamic environments, it incurs
higher total cost and longer execution time, especially as the
number of tasks increases as shown in Table I.

In contrast, the Obstacles-Aware Cluster algorithm—used
throughout this paper—achieves better overall performance
as shown in Table II. Since the proposed algorithm performs
auction at the cluster level rather than individual tasks, it sig-
nificantly reduces the time required for convergence during
the auction process. This makes it suitable for handling a
larger number of tasks efficiently.

This framework enables resilient task allocation, planning,
and operator interaction in complex and dynamic real-world
scenarios. Simulation results in Isaac Sim as shown in the
left size of figure 1 have been demonstrated to validate the
efficacy of our proposed planning algorithm.
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